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SUMMARY 

“Visibilis” is the Latin word for visible. It is the core message of a citizen science project started in 

May 2018. It is about making visible the invisible particles in the air that largely determine the 

quality of the air.  

 

The aim of this study is to increase the reliability of relatively cheap particulate matter sensors by 

means of a model in which the output of the sensor is calibrated against the BAM1020 monitor. 

The project was conducted at an official air quality measuring location in Hoek van Holland. A 

weatherproof case full of different types of sensors and peripheral equipment has been installed on 

the roof of the measuring location, next to the official particulate matter (PM) monitors BAM1020 

and Leckel. Data is collected from the 16th of May 2018 till the 26th of January 2019.  

The reliability of the sensor can be improved by using the multiple linear regression (MLR) 

technique. The PM value from the sensor is read in by the model and the output of the model is 

the prediction for the PM value as it was measured by the official monitor Met One BAM1020. The 

MLR model corrects the calibrated PM value for the temperature and relative humidity of the 

ambient air, which further improves the reliability of the PM sensor.  

The accuracy of the calibration models for the Plantower PMSA003- and Nova SDS011 sensors is 

4 µg/m3 for PM2.5 and 8 µg/m3 for PM10. The accuracy of the PM2.5 models is good in line with 

the reproducibility of 4 µg/m3 of the BAM1020 monitor. The PM10 calibration models show an 

overall bad performance, possibly due to lack of sensitivity for particles >2.5 µm. The validation of 

the models show an accuracy of 4 µg/m3 for PM2.5 and 8 µg/m3 for PM10. 

The accuracy of the MLR calibration models can be further improved by performing the calibration 

on the particle number (PN) concentrations. This is only possible for the PMSA003- and Dylos 

DC1100 sensors where the Dylos DC1100 sensor only supports PN. The accuracy of the 

calibration models for the PMSA003 sensors is 3 µg/m3 for PM2.5 and 6 µg/m3 for PM10. For the 

Dylos DC1100 sensor the accuracies are respectively 5 µg/m3 for PM2.5 and 9 µg/m3 for PM10. 

The validation of the models for the PMSA003 sensor show an accuracy of 3 µg/m3 for PM2.5 and 

6 µg/m3 for PM10. The validation of the models for the Dylos DC1100 sensor shows an accuracy of 

5 µg/m3 for PM2.5 and 8 µg/m3 for PM10. 

The extent to which the models are transferable between the PMSA003 sensors has been 

investigated. This appears to be successful for the model based on mass concentration of 

particulate matter. The transferability for the model based on particle concentrations can be 

improved by standardizing the particle classes to a standard sensor 
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1. Introduction 

“Visibilis” is the Latin word for visible. It is the core message of a citizen science project started in 

May 2018. It is about making visible the invisible particles in the air that largely determine the 

quality of the air. With the help of RIVM (National Institute for Public Health and the Environment) 

and DCMR (Rijnmond Environmental Service), the unique opportunity was obtained to use the 

"Berghaven" measuring location in Hoek van Holland. A weatherproof case full of sensors and 

peripheral equipment has been installed on the roof of the measuring location, next to the official 

particulate matter (PM) monitors BAM1020 and Leckel. With an official monitor it is meant that the 

monitor is calibrated and maintained by DCMR. 

The composition of the sensor case is as follows: 

• 1 x Dylos DC1100 Pro connected (serial/USB) to Raspberry Pi 

• 1 x Nova SDS011 connected (serial/USB) to Raspberry Pi 

• 1 x Nova SDS011 as Luftdaten variant with NodeMCU / Wifi linked to Raspberry Pi 

• 3x Plantower PMSA003 to Wemos D1 Mini Pro with Wifi linked to Raspberry Pi 

• 3x Bosch meteo BME280 on Wemos D1 Mini Pro with Wifi linked to Raspberry Pi 

• 1x Dallas DS18B20 One Wire GPIO connected to Raspberry Pi (outside temperature) 

The set-up at this location offers the possibility to compare the performance of the sensors with 

each other and with the measurement results of the official measuring equipment. If we know what 

the performance of the sensors are and how they relate to each other, then it becomes interesting 

to look at the possibility of calibration and validation procedures against the official measuring 

equipment. The output of a particulate matter sensor is sensitive to air humidity and temperature, 

these parameters are included in the calibration process. The aim was to collect sufficient data to 

achieve a representative variation in the particulate matter and weather conditions. The aim of this 

study is to increase the reliability of the particulate matter sensor by means of one conversion 

algorithm applied to the raw sensor output data. 

2. Location Berghaven 

The project was conducted at the 'Berghaven' DCMR location in Hoek van Holland. This location is 

close to the Nieuwe Waterweg and surrounded by lawns. It is partly residential- and industrial area. 

There are no high buildings in the direct surroundings. The industrial activity is high south to the 

location, there is open sea west to the location and a small harbor is situated east to the location. 

The Nieuwe Waterweg south to the location, is a very busy route for all kind of (cruise) ships and 

tankers as main route to and from the port of Rotterdam. There are three restaurants located to the 

west of the location at a distance of 250 to 750 meters. The influence of these restaurants on the 

air quality at the location is estimated to be limited and is only important in a western wind. 

Due to the nature of this location it is expected that all kind of artificial and airborne particles can 

be present, also strongly depending on the wind direction. With a southeast to southwest wind, 

high concentrations of particulate matter from ships can occur temporarily. Because the station is 

close to the sea, the chances are high that salt crystals will be present in the air with a southwest 

to northwest wind direction.  

The sensor case was installed on the flat roof of the analyzer house. The roof is covered with black 

rubber mats.  
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The location of the analyzer house is presented as a blue drop in figure 1. 

Figure 1: Location Visibilis Project 

 

 

3. Sensor Case Construction 

The sensor case is constructed from an original black plastic single walled Dylos case. The bottom 

and lower side walls of the case are provided with 20 round holes of 25 mm diameter. The holes 

are needed for extra ventilation in the case because a micro climate is to be expected. The case is 

mounted on 4 rubber door stoppers of 5 cm high, attached to every corner of the bottom of the 
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case. This causes extra ventilation through the bottom of the case and it will prevent water leakage 

into the case during heavy rain or melting snow. The inside bottom and side walls of the case are 

covered with insect gauze, 1 mm2 mesh size, to prevent insects and dust coming into the case.  

The sensors are mounted in modules per sensor type, where the Dylos is mounted in a metal 

construction to prevent obstruction of the internal Dylos ventilator. The Raspberry Pi is used to 

collect the sensor data. A power supply unit is mounted inside the case to feed the different sensor 

modules, Raspberry Pi and Dylos. An extra ventilator is mounted inside the sensor case against 

one of the 20 available holes, actively sucking outside air into the case. The extra generated airflow 

is needed for continuous ‘fresh’ air into the box and also to stimulate extra ventilation through all 

the sensor modules and to remove heat generated by the electronics. 

The Raspberry Pi is connected to the LAN via an ethernet cable. The power supply cord is led 

outside the case via a rubber manchet. The external Dallas temperature sensor and the LAN 

ethernet cable are led outside the case via an open hole. 

An upside down sample crate was put on the top of the sensor case and the crate was secured by 

a stone tile. The crate prevents rain or snow coming into the sensor case. A picture of the sensor 

case is given in figure 2. 

Figure 2: Sensor case 

 

4. Particulate matter sensors and official monitors 

At DCMR location “Berghaven” multiple particulate matter (PM) monitors are operational. The 

following PM monitors are installed at Berghaven: 

• Sven Leckel SEQ 47/50 gravimetric Reference Sampler for PM10 (not for PM2.5) 

• Met One BAM1020 for PM10 (beta ray attenuation) 
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• Met One BAM1020 for PM2.5 (beta ray attenuation) 

For this project the BAM1020 is chosen as official monitor for both the calibration and validation of 

the particulate matter sensors. The main reason for this choice is the fact that the BAM1020 

monitors can give hourly measurements for both PM2.5 and PM10, while the Leckel monitors only 

give 24 hours measurements. The BAM1020 monitor has been proven to be equivalent to the 

Leckel monitor for 24 hours measurements for both PM2.5 and PM10. 

The lower detection limit for hourly measurements of PM2.5 and PM10 with the BAM1020 is 4 

µg/m3 (24 hours: 1 µg/m3). This means for hourly measurements that results <4 µg/m3 should be 

considered as noise. The measurement uncertainty of the BAM1020 for hourly measurements is 4 

µg/m3 (3). 

 

Met One BAM1020 and Sven Leckel SEQ47/50 

The properties of the particulate matter sensors, as stated in the factory manuals, are given in 

table 1. For all particulate matter sensors, the measuring principle is based on laser technology. 

Table 1: Properties of the particulate matter sensors 

 

All sensors have a good counting efficiency for particles ≥ 0.5µm. The accuracy of the Dylos 

DC1100 sensor is not specified by the vendor. 

The Dylos DC1100 sensor gives the particle concentration for two classes (particles/0.01 cubic 

foot) for >0.5µm and >2.5µm. The PMSA003- and SDS011 sensors use an internal factory 

algorithm to convert the particle concentration to a mass concentration. In addition to mass 

concentration, the PMSA003 sensor also gives particle concentrations for six classes 
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(particles/0.1L) for >0.3µm, >0.5µm, >1.0µm, >2.5µm, >5.0µm and >10.0µm. The cut-off borders of 

the six classes are not known. 

The properties of the meteorological sensors, as stated in the factory manuals, are given in table 2. 

Table 2: Properties of the meteorological sensors 

 

The follow up for the BME280 is the BME680 with better accuracy. 

5. Data collection 

The sensor case was installed at DCMR location Berghaven on the 7th of May 2018. The first week 

was used to test the sensors for their stability under real time conditions. During that week small 

issues were resolved, mainly data collection problems on the Raspberry Pi and the data 

webserver. On the 16th of May 2018 the official data collection has started. The aim was to collect 

data for one year of time, but unfortunately the data collection was needed to put on hold on the 

26th of January 2019 due to serious communication problems with the Raspberry Pi. This resulted 

in approximately 8 months of data collection and the winter- and spring period has not been 

covered completely.  

Every sensor has an unique code in the data collection process. This is necessary to distinguish 

between the different sensor data in the database. The data of the sensors is automatically 

transferred to the Scapeler data server. The data of the DCMR monitors and KNMI meteorological 

monitors is made available via an API (Application Programming Interface). The meteorological 

data collection from the KNMI monitors was started from the 14th of June 2018. The DCMR monitor 

data are averaged hourly observations and can be retrieved from the ‘Luchtmeetnet’ website 

(https://www.luchtmeetnet.nl/). Luchtmeetnet is the Dutch governmental air quality measurement 

network. The KNMI data are averaged hourly observations, based on 6 individual 10 minute 

observations and are retrieved from the KNMI website 

(https://projects.knmi.nl/klimatologie/uurgegevens/selectie.cgi). 

The coding of the sensors and official monitors is given in appendix 1. 

One of the Plantower sensors (PMSA003_8F33) started to generate randomly very high spikes 

and/or very high constant output from the 2nd of August. The pattern looked like an internal 

technical sensor issue. This problem got worse during the rest of the month. On the 9th of 

September it was decided to stop the data collection of this sensor, because the abnormal output 

was present for more than 50% of the time. The sensor was not replaced by a new one. 

https://www.luchtmeetnet.nl/
https://projects.knmi.nl/klimatologie/uurgegevens/selectie.cgi
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The PMSA003-, SDS011 basic- and Dylos DC1100 sensors operated in continuous mode where 

every second the data was sent to the Raspberry Pi. The Raspberry Pi computed 1 minute 

averages and sent the data to the ‘ApriSensor’ server 

(https://www.scapeler.com/index.php/diensten/aprisensor/). 

The ‘Luftdaten’ sensor operated with specific firmware (https://luftdaten.info/en/home-en/) where 

every 2.5 minutes the measurement was started and stopped. The data was uploaded to the 

‘Luftdaten’ cloud server and subsequently downloaded by the ‘ApriSensor’ server. 

6. Database 

The data is converted to averaged hourly observations by averaging the 1 minute or 2.5 minute 

observations. The hourly observation of e.g. 10 AM is the average of 60 minute observations from 

9:01 AM till 10:00 AM. The database is compiled on the basis of hourly observations, where one 

hour is considered as one ‘sample’. Every sample has a corresponding value for the official 

monitors and sensors. The database consists of 6131 samples collected in the period 16 May 2018 

0:00 AM till 26 January 2019 10:00 AM. In total 13 “time periods” are defined in the database, 

each period has a duration of approximately 2 to 3 weeks. The time periods are chosen 

chronologically. 

At random moments in time, the sensors produced missing data, in most occasions for just one 

minute. The missing data is not taken into account for further analysis. Because of the high 

resolution of the data, missing data has negligible effect on the hourly averages.  

At random moments in time, the DCMR monitors and/or the sensors caused missing or constant 

data for longer periods. This was caused by LAN-, Wifi- or Raspberry Pi communication problems. 

This type of data is considered as invalid data and removed from the database.  

Sudden very high or very low abnormal values, out of the trend, are considered as spikes and 

removed from the database. This was for example an issue for the BME280 air pressure sensor 

returning zero values. 

The Plantower PMSA003 sensor has the ability to output the particulate matter in two different 

ways, that is the concentration of PM1, PM2.5 and PM10 in µg/m3 and the concentration in 

particles/0.1 liter (particle number PN). The PN is given for six classes, for >0.3 µm, >0.5 µm, >1.0 

µm, >2.5 µm, >5.0 µm and >10.0 µm. The definition of PN is the number of particles per 0.1 liter of 

air having a diameter greater than the specified value. For the three PMSA003 sensors, both the 

PM- and the PN data is incorporated into the database and are taken into account for the 

calibration and validation of the PMSA003 sensor against the BAM1020.  

Data is collected from three Bosch BME280 meteorological sensors. A preliminary study of the 

Bosch sensors showed a strong consistency in the data for temperature, relative humidity and air 

pressure. Therefore it was decided to incorporate data of one particular Bosch sensor in the 

database (BME280_8F33 sensor 1). 

https://www.scapeler.com/index.php/diensten/aprisensor/
https://luftdaten.info/en/home-en/
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7. Data exploration 

The construction of the database, exploration, statistics, calibration and validation of the models is 

worked out by use of the chemometrics software package The Unscrambler® X from CAMO 

Norway (https://www.camo.com/unscrambler/). For all XY-correlation (scatter) plots and model 

validation plots, the black line is the target line (Y=X) and the blue line is the regression line. For all 

model calibration plots, the black line is the target line and the red line is the regression line. 

7.1 Particulate Matter 

The BAM1020 monitor data for PM2.5 and PM10 is presented in figure 1. 

Figure 1: PM2.5 & PM10 data for the BAM1020 monitors at DCMR Berghaven

 

The average concentration for PM2.5 and PM10 are respectively 9.8 µg/m3 and 21.3 µg/m3 with a 

standard deviation of respectively 8.5 µg/m3 and 10.3 µg/m3. In general the PM10 value is higher 

than the PM2.5 value, except for the periods 17 November till 28 November 2018 and 2 January till 

26 January 2019 where the PM10 value is almost equal to the PM2.5 value. There is no period with 

extreme high or low PM concentrations. The variation in concentration is randomly distributed 

among the seasons. Despite the fact that the project period has not met 1 year of runtime, it is 

assumed that the variation within the 8-month period is indicative for the project.  

The correlation between the BAM1020 hourly data for PM2.5 and PM10 is investigated and based 

on 6008 data pairs.  

• the maximum PM2.5 value is 63 µg/m3 

• the maximum PM10 value is 85 µg/m3 

• the majority of the data for PM2.5 is < 15 µg/m3 

https://www.camo.com/unscrambler/
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• the majority of the data for PM10 < 25 µg/m3 

• the squared correlation coefficient (R2) is weak 

 

The correlation is presented in figure 2. 

Figure 2: Correlation between PM2.5 & PM10 for the BAM1020 monitors at DCMR Berghaven 

 

The correlation between the raw PM2.5 and PM10 output is also investigated for the sensors. The 

raw output is directly retrieved by the sensor and not corrected by any pretreatment. The Dylos 

sensor does not output PM values, therefore the correlation is investigated between particles > 0.5 

µm and particles > 2.5 µm. 

The correlation plots are presented in figure 3. 

The correlations of the PMSA003 sensors show similar performance. The PMSA003_9492 plot is 

taken as a representative example for the other two sensors. 

The PM correlation plots for the sensors all show a ‘V-shaped’ curve. The V shape is caused by 

multiple correlation lines present in different data sets. For the Dylos DC1100 sensor, the particle 

concentrations (PN) are taken as input variables. The V shape is also visible in case the PN classes 

of the other sensors are taken as input variables. Possible explanations for the V shape could be 

the origin of the airborne particles or humidity effects or a combination of both. The sensitivity of 

the sensor laser will be influenced by the composition of the airborne particles. For example, the 

size of salt crystals is effected by humidity, this effect is known as ‘humidity growth’. Location 

Berghaven is very close to the sea, salt crystals (NaCl) are definitely a part of the airborne particles 

for this location. 
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Figure 3: Correlation plots between PM2.5 & PM10 

Nova SDS011 

 

Nova SDS011 ‘Luftdaten’ 
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Plantower PMSA003_9492 

 

Dylos DC1100 (particles/0.01 cubic foot) 

 

 

A comparison between the BAM1020 and PM sensors for respectively PM2.5 and PM10 is 

presented in figure 4 and 5. The Y-axis in figure 4 is cut off at 100 µg/m3 and in figure 5 at 140 
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µg/m3 to achieve better resolution between the lines. During only a few hours, PM2.5 reached a 

value of a maximum of 150 µg/m3 and PM10 a value of a maximum of 205 µg/m3  

The PM2.5 concentration for the Dylos DC1100 is estimated by an empirical equation supplied by 

the vendor. The raw output of the Dylos DC1100 is particles/0.01 cubic foot. The equation, as 

specified by Dylos, is as follows: 

PM2.5 Dylos DC1100 (µg/m3) = (particles > 0.5 µm minus particles > 2.5 µm)/250. 

The original Dylos manual specifies a conversion factor of 150, but this was later revised to 250 

and this factor is used in this report 

For PM10 this estimation equation is not available. Hence, the Dylos DC1100 is not presented in 

the graph for PM10.  

Figure 4: Comparison PM2.5 between BAM1020 and sensors. 
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Figure 5: Comparison PM10 between BAM1020 and sensors. 

 

In general, the sensors are biased to each other and the BAM1020. This is more dominant for 

PM10. There are also multiplicative effects present.  

To get a better insight in these effects, the differences are calculated between the sensors and the 

BAM1020. In the ideal situation, the bias should be zero and the differences should be scattered 

randomly around zero. The differences are presented in figure 6 and 7 for respectively PM2.5 and 

PM10.  
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Figure 6: Difference PM2.5 between sensors and BAM1020. 

 

Figure 7: Difference PM10 between sensors and BAM1020. 
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For PM2.5, the SDS011 ‘Luftdaten’ sensor shows the largest positive bias to the BAM1020 and the 

PMSA003_9290 sensor shows the largest negative bias. A period in May 2018 and November 

2018 show higher differences to the BAM1020. This is valid for both PM2.5 and PM10. A possible 

explanation could be the composition of the airborne particles in those particular periods. The 

KNMI data from Hoek van Holland shows no correlation between wind direction and increasing 

bias. There is a weak correlation between the differences and the BAM1020 PM value, this is valid 

for both PM2.5 and PM10. The higher the BAM1020 PM value, the higher the difference against 

the PM value of the sensors. This is a multiplicative effect. 

Like for PM2.5, the SDS011 ‘Luftdaten’ sensor shows for PM10 the largest positive bias to the 

BAM1020 and the PMSA003_9290 sensor shows the largest negative bias. 

In figure 8, we look more closely into the differences for PM2.5 for the three PMSA003 sensors. It 

can be clearly seen the sensors show similar performance. This pattern is also visible for PM10, 

but not shown in a graph. 

Figure 8: Difference PM2.5 between PMSA003 sensors and BAM1020.

 

The Plantower PMSA003 sensor measures also the PN number for six classes. The three PMSA 

sensors show similar performance, therefore sensor PMSA003_9492 is taken as a representative 

example for the plots. The data for the six PN classes is presented in figure 9. 
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Figure 9: Particle number data of the Plantower PMSA003_9492 sensor. 

0.3µm, 0.5µm and 1.0µm particles 

 

1.0µm, 2.5µm and 10.0µm particles 

 

As we have seen before, the correlation plots between PM2.5 and PM10 show a ‘V-shaped’ curve. 

This effect is also visible for each correlation between randomly chosen PN classes, but the effect 
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is more dominant for the classes >1.0µm. As an example, the correlation plots between PN 1.0µm 

and PN 2.5µm for the Plantower sensor PMSA003_9492 is presented in figure 10. 

Figure 10: Correlation plot PN 1.0µm versus PN 2.5µm for sensor PMSA003_9492. 

 

The importance of PN number for the calibration of the PMSA003 sensors will be explained in 

more detail in 8.2. 

The correlation of the PMSA003 sensors 9290 and 8F33 against 9492 is investigated for all PN 

classes. The results are given in table 3. 

Table 3: Between sensor correlation statistics for the PN classes of the PMSA003 sensors. 
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• N  : number of observations 

• Slope  : steepness of the correlation line 

• Offset  : cut off on the Y-axis 

• R2 pearson : Pearson’s correlation coefficient 

• SED  : Standard Error of Determination 

• Bias  : average difference between Y and X 

Due to technical problems with the 8F33 sensor, the number of observations is much less 

compared to the other sensors. The best correlation is achieved for the lowest PN classes 0.3 µm 

and 0.5 µm. The lowest classes also deliver the highest PN values. The slope increases among the 

PN classes with the highest value for the 10 µm class. This is an indication that the sensors differ in 

terms of sensitivity, but also that the cut-off borders in the PN classes is different. 

7.2 Meteorology 

For the meteorological parameters temperature and relative humidity, the data of the official KNMI 

monitors and the sensors is presented in figure 11.  

It can be concluded, a micro climate is present inside the sensor case, caused by the heat 

produced by the sensors and peripheral equipment, but also caused by heat absorption by the 

black surface of the sensor case. The inside temperature shows a bias of approximately +7°C 

compared to the external Dallas sensor. The external Dallas sensor correlates good with the official 

KNMI temperature monitor. The inside relative humidity shows a bias of approximately -30% 

compared to the official KNMI monitor. The inside temperature varies between +6.1°C and +47.9°C 

and the relative humidity between 10.4% and 66.4% (drying effect). 

Figure 11: Temperature and relative humidity data of KNMI monitors and sensors 
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Studies have proven the impact of humidity and/or temperature on the output of laser based PM 

sensors1,2. Temperature and relative humidity are also taken into account for the calibration and 

validation of the PM sensors against the BAM1020. Air pressure, wind direction and wind speed 

are not included in the calibration and validation of the models, because these parameters most 

likely have no influence on the sensitivity of the sensors. Due to the micro climate in the sensor 

case, the inside variations in temperature and relative humidity do not match the variations outside 

the sensor case. 

The Bosch BME280 sensor also measures the air pressure. The lowest recorded value is 977.2 

hPa and the highest recorded value is 1041.5 hPa. The air pressure is presented in figure 12.  

Three BME280 sensors were in use for the data collection. A short study on the output of the three 

BME280 sensors (id 8F33, 9290 and 9492 see appendix 1) shows that sensor 8F33 gives the 

average output of the three BME280 sensors (not discussed in this report). The meteorological 

data used for the calibration and validation of the PM sensors is derived from the 8F33 sensor. 

Figure 12: Air pressure Bosch BME280 sensor 
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8. Calibration & Validation 

8.1 Plantower algorithm 

The sensor firmware converts the PN classes into a PM2.5- and PM10 concentration. The supplier 

was not willing to provide information about this algorithm. The algorithm is simulated by 

calibration of the six PN classes against the PM2.5- or PM10 concentration in µg/m3. As calibration 

type, the MLR (Multiple Linear Regression) function is used, assuming all PN classes have a linear 

relationship with PM2.5 and PM10. Within the MLR models, the six PN classes are used as X-

variables. The MLR calibration results for the three PMSA003 sensors show similar performance, 

therefore sensor PMSA003_9492 is taken as a representative example in the plots.  

The MLR models are presented in figure 13 where the X-axis is the original sensor PM value and 

the Y-axis is the predicted PM value by the MLR model. 

For both PM2.5 and PM10, a very strong correlation, good linearity and perfect slope is present. 

The Y-residuals tend to bias above the black target line (Y=X) when PM2.5 and PM10 > 90 µg/m3, 

but in this region there is also lack of data. The accuracy of the calibrations is expressed as 

RMSEE (Root Mean Square Error of Estimation) and is 1.0 µ/m3 for PM2.5 and 1.2 µg/m3 for PM10. 

It looks like the MLR models are a good representation of the internal factory algorithm. 

The MLR models are validated with an independent set. The accuracy of the validation is 

expressed as RMSEP (Root Mean Square Error of Prediction), the values are 1.0 µg/m3 for PM2.5 

and 1.2 µg/m3 for PM10. The RMSEP values are very good in line with the RMSEE values of the 

calibration models.  

Figure 13: MLR models for PM2.5 and PM10 against PN, sensor PMSA003_9492 
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The regression coefficients of the MLR models show a remarkable difference. The PN class 5.0µm 

shows the largest negative value for the PM2.5 model while for the PM10 model this class has 

almost no influence. For both PM2.5 and PM10 models, the PN classes 0.5µm, 2.5µm and 10.0µm 

show the most influence on the models. The regression (B) coefficients for the PM2.5- and PM10 

model are presented in figure 14. 

Figure 14: MLR regression coefficients for PM2.5 and PM10 for sensor PMSA003_9492 

 

The standard errors in the regression coefficients and intercepts are given in table 4. 
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Table 4: Standard errors in the regression coefficients and intercepts of the MLR models PM2.5 

and PM10 

 

The true internal factory algorithm to convert PN into PM is not known, but it can be assumed, it is 

a lookalike MLR function where every PN class contributes to the PM concentration. 

8.2 Calibration of the sensors against BAM1020 

The use of a direct correlation between the PM sensor output and the BAM1020 has little value. 

The influence of relative humidity and temperature causes a bad fit and poor accuracy of the 

calibration line. 

The aim of this project is to increase the reliability of the particulate matter sensor by means of a 

model in which the output of the sensor is calibrated against the BAM1020 monitor. A specific 

model applies to PM2.5 and PM10. Because both relative humidity and temperature of the air 

influence the output of the sensor, these variables are included in the calibration process. The 

calibration is performed for each sensor and the robustness of the model is determined by use of 

validation.  

The database is split into a calibration- and validation set. Every 6th sample belongs to the 

validation set (N=1022), the remaining samples belong to the calibration set (N=5109). One sample 

is an hourly observation of all available data. The calibration set is used for construction of the 

models, the validation set is used for the independent validation of the models. 

For the calibration of the sensors, it is assumed that the BAM1020 gives the true value. It is also 

assumed that the influence of RH% and T on the sensor output can be explained by a linear model. 

For the calibration, the MLR type was chosen and that stands for Multiple Linear Regression. There 

are many more regression techniques available like PLS (Partial Least Squares) or non-linear 

regression techniques or even machine learning techniques (e.g. Random Forest). For this project 

the MLR method is chosen to keep it less complex and explainable. As experiment, some 

calibrations were computed using PLS, but the results were not significantly better compared to 

MLR. These results are not part of this report. 

The construction of the MLR model looks like this example below: 

PM2.5_BAM1020 = constant + a*PM2.5_sensor + b*RH% + c*T 

• a  : regression coefficient of PM2.5 output in µg/m3 

• b  : regression coefficient of Relative Humidity in % 
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• c  : regression coefficient of Temperature in °C 

• constant : a constant number 

PM2.5_BAM1020 is the Y-variable. PM2.5_sensor, RH% and T are the X-variables. The direction of 

the regression coefficients and constant can be positive or negative. The value of the regression 

coefficient and constant determines how important they are for the model. 

The MLR model can be seen as an arithmetic post calculation on the output value of the sensor. In 

this way, the sensor ‘predicts’ the PM value as if it was measured by the BAM1020. The MLR 

model has a certain accuracy and it can improve the reliability of the sensor, because the influence 

of RH% and T are also taken into account. For each sensor a specific MLR model is constructed 

and validated to test the robustness of the MLR model.  

The MLR calibrations are non-orthogonal regressions and are performed in two ways. The first way 

is calibration against the BAM1020 by using the PM output, RH% and T as X-variables. This is 

worked out for all sensors except for the Dylos DC1100. The second way is calibration against the 

BAM1020 by using the Particle Number (PN) classes, RH% and T as X-variables. This is worked 

out for the Plantower PMSA003 sensors and the Dylos DC1100 sensor. As discussed in 7.1, the 

PMSA003 sensor delivers the PN of six classes and the DC1100 delivers the PN for two classes. 

For the PMSA003 sensor this way returns into a total of 8 X-variables and for the DC1100 into a 

total of 4 X-variables.  

The properties of the MLR calibrations based on PM, RH% and T as X-variables are given in table 

5. The errors of the regression coefficients are given in the lower table. 

Table 5: properties MLR models against BAM1020 with PM, RH% and T as X-variables 

 

Errors regression coefficients 
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Explanation of the parameters: 

• N  : number of observations 

• Range  : the min-max range of the model 

• Slope  : steepness of the model regression line 

• Offset  : cut off on the Y-axis 

• R-square : correlation coefficient of the regression line (R2-pearson) 

• Accuracy : Root Mean Square Error of Estimation (RMSEE) 

• B0  : Constant 

The accuracy among the different sensors is comparable for both PM2.5 and PM10. The 

PMSA003 sensors perform slightly better for PM2.5, resulting in a better slope and R2. The MLR 

calibrations for PM10 perform significantly worse compared to PM2.5. The accuracy of the PM2.5 

models is approximately 4 µg/m3 and this is equal to the reproducibility of the BAM1020 for hourly 

observations. The accuracy for the PM10 models is approximately 8 µg/m3. 

A graphical presentation of the MLR models from table 5 are given in figure 15 for PM2.5 and in 

figure 16 for PM10. For the PMSA003 sensors, only the 9492 is presented. For all MLR models the 

black line is the target line (Y=X) and the red line is the slope. 

Figure 15: MLR models PM2.5 against BAM1020 with PM, RH% and T as X-variables
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Figure 16: MLR models PM10 against BAM1020 with PM, RH% and T as X-variables 
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The properties of the MLR calibrations based on PN, RH% and T as X-variables are given in table 

6. The errors of the regression coefficients are given in the lower table. 

Table 6: Properties MLR models against BAM1020 with “PN+RH+T” as X-variables 
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Errors regression coefficients

 

PMSA003 

For the PMSA003 sensors it can be concluded that the models based on “PN+RH+T” show better 

overall performance compared to the models based on “PM+RH+T” . The accuracy of the models 

for PM2.5 improves from averaged 3.6 to 3.1 µg/m3. The accuracy of the models for PM10 

improves from averaged 7.7 to 5.7 µg/m3. The regression coefficients for the models based on 

“PM+RH+T” show comparable signs and values among the three sensors. Sensor 8F33 shows 

more deviating regression coefficients, but this is due to a much smaller calibration set. The 

regression coefficients for the models based on “PN+RH+T” do not show comparable signs and 

values. It is not clear why this is the case, but it seems, that it is not possible to maintain a ‘general’ 

model with averaged regression coefficients.  

SDS011 

For the SDS011 sensors the models based on “PN+RH+T” could not be constructed, because this 

sensor does not provide the PN classes. 

Dylos DC1100 

For the Dylos DC1100 sensor, only the models based on “PN+RH+T” could be constructed, 

because this sensor does not provide PM values. 

The PN classes for the Dylos DC1100 sensor are different compared to the Plantower PMSA003 

sensor. The Dylos manual gives information about the relation between the PN class and PM.  

According to the manual, “PN class >0.5µm” minus “PN class >2.5µm” is a measure for PM2.5 

(PM2.5-Dylos). This class can be converted to PM2.5 after dividing by a factor (see 7.1). The Dylos 

manual does not give a measure for PM10, based on a PN class. 

The MLR model for PM2.5 is calibrated against the PN class as proposed by the manual, but also 

against the “PN class >0.5µm” (PMtotal_Dylos), because in theory this class should cover all 

measured particles which could have a potential contribution to PM2.5. 
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The MLR model for PM10 is calibrated against the “PN class >2.5µm” (PM10-Dylos), but also 

against the “PN class >0.5µm” (PMtotal_Dylos), because in theory this class should cover all 

measured particles which could have a potential contribution to PM10. 

In summary, the MLR calibrations are constructed for the following PN classes: 

1. PM2.5-Dylos  = PN class >0.5µm minus PN class >2.5µm 

2. PM10-Dylos  = PN class >2.5µm 

3. PMtotal-Dylos = PN class >0.5µm (PM2.5 and PM10) 

The overall performance of the Dylos models are worse compared to the PMSA003 sensors. This 

can be due to the fact that the Dylos sensor provides two PN classes while the PMSA003 sensor 

provides six PN classes. The PM2.5 model based on PMtotal-Dylos shows comparable 

performance with the model based on PM2.5-Dylos. The PM10 model based on PMtotal-Dylos 

shows better performance compared to the model based on PM10-Dylos. Both models for PM10 

show very bad slopes, which could mean too low sensitivity of the Dylos sensor for particles >2.5 

µm. 

A graphical presentation of the MLR models from table 3 are given in figure 17 for PM2.5 and in 

figure 18 for PM10. For the PMSA003 sensors, only the 9492 is presented. 

Figure 17: MLR models PM2.5 against BAM1020 with “PN+RH+T”  as X-variables 
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Figure 18: MLR models PM10 against BAM1020 with “PN+RH+T”  as X-variables 
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8.3 Improvement of MLR model performance by ASTM D6708  

In general the slope and fitting of a (multivariate) calibration model can be investigated for 

improvement by use of ASTM D6708 (standard practice for statistical assessment and 

improvement of expected agreement between two test methods that purport to measure the same 

property of a material). This is achieved by the use of a mathematical post processing on the 

output of the model. The ASTM D6708 assessment can be considered as an extra part of the 

calibration process of the models. 

The following post processing options (classes) can be calculated: 

1. Class 0 Y =X (complete equality, no improvement needed) 

2. Class 1a Y = X + b (weighed constant) 

3. Class 1b Y = X * b (weighed proportional) 

4. Class 2 Y = aX + b (weighed linear) 

Where X is the output of the calibration model and Y is the output of the post processing according 

to ASTM D6708. 

ASTM D6708 is investigated for the PM2.5 model for sensor PMSA003_8F33 based on 

“PN+RH+T”. The available method to calculate the ASTM D6708 improvements could manage a 

maximum of 2000 samples. The 8F33 model has 2093 samples and therefore 93 samples with the 

lowest PM2.5 values were removed from the set. The lowest samples are far below the minimum 

detection limit of the BAM1020 monitor and are therefore not important for the model. The 

conclusion of ASTM D6708 is that the model can be improved by use of a Class 2 post calculation. 

The function of this Class 2 model is Y = 1.184X – 1.3685.  

In figure 19 the outcome of the different classes is presented. In figure 20 the Y-residuals versus 

level is presented for the different classes. The ‘LAB’ value is equal to the BAM1020 monitor value, 

the X-axis is the BAM1020 value and the Y-axis is the model value. The best slope, fitting and 

residual distribution is achieved by the Class 2 post calculation. It must be notified that the Class2 

post calculation increases the model standard error from 3.0 µg/m3 to 3.2 µg/m3. The Class 0 

shows an under prediction effect of the model for PM concentrations > 35 µg/m3 and an over 

prediction effect for PM concentrations < 10 µg/m3. There is a so called scissor around 25 µg/m3. 
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The Class2 post calculation neutralizes this scissor effect. The Y-residuals show a more 

homogeneous distribution around the different levels of the model after a Class 2 post calculation. 

Figure 19: Outcome of ASTM D6708 improvement on PM2.5 model PMSA003_8F33 “PN+RH+T” 

 

Figure 20: Residuals versus level of different ASTM D6708 calculations on PM2.5 model 

PMSA003_8F33 “PN+RH+T” 

 

The work out of the MLR model (PM2.5, based on “PN+RH+T”) inclusive the Class 2 post 

calculation is investigated for the PMSA003_8F33 sensor. The validation set (N=419) is used for 

this investigation. The PM2.5 results retrieved by the MLR model and the MLR model + Class2 

post calculation are compared with the BAM1020 monitor values (figure 21). Also the PM2.5 (Y) -
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residuals for the MLR model and the MLR model + Class2 post calculation are compared (figure 

22).  

Figure 21: PM2.5 BAM1020, MLR, (MLR+Class2) for PMSA003_8F33 Validation Set. 

 

Figure 22: Difference PM2.5 versus BAM1020 for MLR, (MLR+Class2) for PMSA003_8F33 

Validation Set 

 

The bias and standard deviation in the differences between the MLR model and BAM1020 on the 

total validation set are respectively -0.09 µg/m3 and 2.84 µg/m3. For the “MLR+Class2” model the 

values are respectively 0.00 µg/m3 and 2.98 µg/m3. The Class2 post calculation reduces the bias to 

zero but increases the standard deviation with 0.12 µg/m3.  

For this investigation, it can be concluded that the ASTM D6708 post calculation does not 

significantly improve the model performance. However, it is recommended to investigate for the 

other MLR models if the ASTM D6708 post calculation could improve the model performance.  
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8.4 Validation MLR models 

As discussed in 8.2, the MLR calibration models are validated with an independent validation set to 

test the accuracy and robustness. The hourly sensor observations of the validation set are used to 

predict PM2.5 and PM10 by the calibration models and the predicted results are compared with 

the BAM1020 monitor values.  

The accuracy of the validation (SEP: Standard Error of Prediction) is tested against the accuracy of 

the calibration model (SEC: Standard Error of Calibration). The bias in the validation is tested 

against the SEP validation. The numbers of samples in the calibration- and validation sets are very 

big, therefore it makes no sense to use statistical tests for evaluation of the accuracy and bias e.g. 

the F-test for accuracy and t-test for bias. 

The other parameters of the validation are used to check if the calibration model is robust for 

independent sensor observations. 

The validation results for the MLR models based on “PM+RH+T” are given in table 7. The 

validation results for the MLR models based on “PN+RH+T” are given in table 8. 

Table 7: Validation results MLR models based on “PM+RH+T” 

 

Explanation of the parameters: 

• N  : number of observations 

• Range  : the min-max range of the model 

• Slope  : steepness of the model regression line 

• Offset  : cut off on the Y-axis 

• R-square : correlation coefficient of the regression line (R2-pearson) 

• Accuracy : Root Mean Square Error of Prediction (RMSEP) 

• B0  : Constant 

The accuracy of all validations are good in line with the accuracy of the calibration models. The 

validation accuracy for the PMSA sensors is better for PM2.5 compared to the SDS011 sensors, 

but for PM10 they are comparable among all sensors. The bias of all validations is < 10% of the 

accuracy of the validations and is therefore not significant. The slope of the validations for PM2.5 

are good and for PM10 the slopes are weak.  

The offsets of all PM2.5 models are within the minimum detection limit of 4 µg/m3 of the BAM1020 

monitor. The offsets of all PM10 models are higher than the minimum detection limit of 4 µg/m3 of 

the BAM1020 monitor.  
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The R2 values are comparable with the slope values. The conclusion is clear that PM10 is hard to 

model against the BAM1020 based on “PM+RH+T” as X-variables. This could possibly be 

improved with other regression techniques. 

A graphical presentation of the validations from table 7 are given in figure 23 for PM2.5 and in 

figure 24 for PM10. For the PMSA003 sensors, only the 9492 is presented. For all MLR validations 

the black line is the target line (Y=X) and the blue line is the slope. The X-axis (Y Reference) is the 

BAM1020 value, the Y-axis (Predicted Y) is the MLR model value. 

Figure 23: Validation of MLR models PM2.5 against BAM1020 with “PM+RH+T”  as X-variables 
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Figure 24: Validation of MLR models PM10 against BAM1020 with “PM+RH+T” as X-variables 
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Tabel 8: Validation results MLR models based on “PN+RH+T” 
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The accuracy of all validations are good in line with the accuracy of the calibration models. The 

validation accuracy for both PM2.5 and PM10 for the PMSA003 sensors is significantly better 

compared to the Dylos DC1100 sensor.  

The slope of the validations for PM2.5 are good for the PMSA003 sensors and moderate for the 

Dylos DC1100 sensor. The slope of the validations for PM10 are moderate for the PMSA003 

sensors and very weak for the Dylos DC1100 sensor.  

The validation of the Dylos DC1100 sensor also proofs that the PM10 model is very weak in 

performance.  

The offsets of all PM2.5 models are within the minimum detection limit of 4 µg/m3 of the BAM1020 

monitor. The offsets of all PM10 models are higher than the minimum detection limit of 4 µg/m3 of 

the BAM1020 monitor.  

The R2 values are comparable with the slope values. The bias of all validations is < 10% of the 

accuracy of the validations and is therefore not significant.  

The overall performance of the validations for the PMSA003 MLR models based on “PN+RH+T” is 

better compared to the MLR models based on “PM+RH+T”. It looks like that information gets lost 

due to the internal PMSA algorithm converting the PN classes to PM values. This information is of 

importance and used by the MLR models based on “PN+RH+T”. 

The validation results for the Dylos DC1100 sensor show that the performance for the PM2.5 

model is not improved by choosing the particles >0.5µm instead of (>0.5µm - >2.5µm). However, 

the PM10 model based on particles >0.5µm shows an improved performance compared to the 

model based on particles >2.5µm. 

A graphical presentation of the validations from table 8 are given in figure 25 for PM2.5 and in 

figure 26 for PM10. For the PMSA003 sensors, only the 9492 is presented. 

Figure 25: Validation MLR models PM2.5 against BAM1020 with “PN+RH+T”  as X-variables 
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Figure 26: Validation of MLR models PM10 against BAM1020 with “PN+RH+T” as X-variables 
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8.5 MLR model transfer between Plantower sensors 

The models are developed per sensor and are also validated per sensor. It has been investigated 

to what extent the models are transferable between the Plantower sensors, because three of this 

type of sensor have been calibrated. Transferability has been assessed on the validation results of 

the model transferred from sensor PMSA003_9492 to sensors PMSA003_9290 and 

PMSA003_8F33. This is done for PM2.5 and PM10 based on “PM+RH+T” and “PN+RH+T”. The 

validation results after the transfer are compared with the primary validation results of the 

individual models for sensor PMSA003_9290 and PMSA003_8F33. 
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The results for the models based on “PM+RH+T” are given in table 9 and for “PN+RH+T” in table 

10. 

Table 9: Validation results transfer of PMSA003_9492 models “PM+RH+T” to other PMSA003 

sensors 

 

The validation results for sensor PMSA003_9290 are comparable with the primary validation 

results as given in table 7, except for the bias which is >10% of the accuracy and therefore 

significant. The validation results for sensor PMSA003_8F33 are comparable with the primary 

validation results as given in table 7. 

Table 10: Validation results transfer of PMSA003_9492 models “PN+RH+T” to other PMSA003 

sensors 

 

The validation results for sensor PMSA003_9290 are not as good as the primary validation results 

as given in table 8. However, for PM2.5 the slope and R2 are good and the accuracy is just 0.6 

µg/m3 worse compared to the primary validation. The biases are >10% of the accuracy and are 

therefore significant.  

The validation results for sensor PMSA003_8F33 are extremely bad. According to table 3, the 

correlations of the PN classes between sensor PMSA003_9290 and PMSA003_9492 show 

comparable sensitivity but the correlations between PMSA003_9492 and PMSA003_8F33 show 

much more sensitivity for the latter sensor. This has a high impact on the validation results. 
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Based on the results of table 9 and 10 it can be concluded that the transferability of the models 

based on “PM+RH+T” gives better performance compared to the “PN+RH+T” models. A possible 

improvement of the transferability of the “PN+RH+T” models could be a standardization of the PN 

classes. This will be discussed in 8.6. 

8.5.1 Real-time experiment model transfer PMSA003 sensor 

The PM2.5- and PM10 MLR model developed for the PMSA003_9492 sensor and based on 

“PM+RH+T” is transferred to a live PMSA003 sensor. The raw PM2.5- and PM10 values of the 

sensor are compared with the MLR predicted values and with the official PM2.5- and PM10 

monitors at two RIVM locations. The MLR models are applied on the 10th of October on a 

PMSA003 sensor (62F3) active at location ‘s-Gravenpolder in Zeeland. The RIVM locations are 

‘Ossendrecht’ and ‘Breda’, respectively 40km and 90km east from ‘s-Gravenpolder. 

The results of this experiment are presented in the graphs below. The graphs shows the hourly 

averaged values for PM2.5, PM10, temperature and relative humidity for different days. The blue 

line is the raw PM sensor output, the lilac line is the PM prediction by the MLR model. The URL to 

the real time graph is https://openiod.org/SCAPE604/images/R/apri-

sensor/aprisensor_sgravenpolder-mlr.png.  

The results can be influenced by temporary increases from local sources such as wood-burning 

stoves. Larger deviations may then occur temporarily with the official monitors. The general picture 

shows that the post-calculation using the MLR model for both PM2.5 and PM10, the sensor value 

comes closer to the official monitor value. 

 

https://openiod.org/SCAPE604/images/R/apri-sensor/aprisensor_sgravenpolder-mlr.png
https://openiod.org/SCAPE604/images/R/apri-sensor/aprisensor_sgravenpolder-mlr.png
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8.6 Standardization of the MLR Calibration Model based on particle 

numbers 

The overall performance of the calibrations and validations for the PMSA003 MLR models based 

on “PN+RH+T” is better compared to the MLR models based on “PM+RH+T”. However, 

transferred models based on “PM+RH+T” give better validation performance compared to the 

“PN+RH+T” models. The success rate of the model transfer can possibly be improved by 

standardization of the PN classes to a specific ‘reference sensor’. For this experiment, sensor 

PMSA003_9492 is chosen as the reference. The PN classes of the other two PMSA003 sensors 

are recalculated by use of the parameters as given in table 3. After standardization of the PN 

classes, the MLR models constructed for sensor PMSA003_9492 can be applied on the other two 

PMSA003 sensors. 

The recalculation is implemented by applying the linear regression coefficients slope and offset 

from table 3 on the PN classes of the sensors to be standardized against sensor PMSA003_9492. 

As an example, the standardization of PN class 2.5µm of sensor PMSA003_9290 to 

PMSA003_9492 is implemented as follows: 

PN class 2.5µm_PMSA003_9492 = 1.790 * PN class 2.5µm_PMSA003_9290 – 0.95 

The slope and offset in this calculation are derived from the correlation plot as given in figure 27 

Figure 27: Correlation plot PN Class 2.5µm between PMSA003_9290 and PMSA003_9492 
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After standardization of the PN classes of sensor PMSA003_8F33 and PMSA003_9290 the 

validation of the two sensors is carried out by use of the “PN+RH+T” model calibrated for sensor 

PMSA003_9492. The validation results after standardization are compared with both the primary 

validation of the sensors as given in table 8 and the validation results without standardization as 

given in table 10. An overview of the results is given in table 11. A graphical presentation of the 

validations after PN standardization is given in figure 28. 

Table 11: Comparison of the primary validation results of the “PN+RH+T” models for sensors 

PMSA003_8F33 and PMSA003_9290 with model transfer and after PN standardization 

 

Based on the data from table 11, it can be concluded that the validation results after 

standardization correspond well with the primary validations of the models. The accuracy after 

standardization is slightly poorer, but the bias is <10% of the accuracy and therefore not 

significant. The results show that standardization of the PN classes can be a good alternative if one 

wants to use a model calibrated with the particle classes of one particular ‘reference’ sensor.  
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Figure 28: Validation of the “PN+RH+T” PM2.5 models for sensor PMSA003_9290 and 

PMSA003_8F33 after standardization of the PN classes 

Validation PM2.5 sensor PMSA003_9290 after PN standardization 

 

 

Validation PM2.5 sensor PMSA003_8F33 after PN standardization 

 

Validation PM10 sensor PMSA003_9290 after PN standardization 
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Validation PM10 sensor PMSA003_8F33 after PN standardization 
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9 Conclusions & Recommendations 

The reliability of relatively cheap particulate matter (PM) sensors can be improved by using the 

multiple linear regression (MLR) technique. The PM value from the sensor is read in by a model 

and the output of the model is the prediction for the PM value as it was measured by the official 

monitor Met One BAM1020. The MLR models are calibrated separately for PM2.5 and PM10. As 

input variables the PM value, relative humidity (RH) and temperature (T) are used. For the 

PMSA003 sensor also the particle number concentrations (PN), RH and T are used. For the Dylos 

DC1100 sensor, only PN, RH and T could be used. 

It is well known that PM sensors with laser technology are sensitive to mainly relative humidity and 

to less extend the temperature of the ambient air. The MLR model corrects the calibrated PM 

value for the temperature and relative humidity of the ambient air, which further improves the 

reliability of the PM sensor. The input for temperature and relative humidity can be provided by 

sensors that are mounted together with the PM sensor in the same measuring box. 

The accuracy of the calibration models for the PMSA003- and SDS011 sensors is 4 µg/m3 for 

PM2.5 and 8 µg/m3 for PM10. The accuracy of the PM2.5 models is good in line with the 

reproducibility of 4 µg/m3 of the BAM1020 monitor. The PM10 calibration models show an overall 

bad performance, possibly due to lack of sensitivity for particles >2.5 µm. The validation of the 

models show an accuracy of 4 µg/m3 for PM2.5 and 8 µg/m3 for PM10. 

 

Improvement of the model 

The accuracy of the MLR calibration models can be further improved by performing the calibration 

on the PN concentrations. This is only possible for the PMSA003- and Dylos DC1100 sensors 

where the Dylos DC1100 sensor only supports PN. The accuracy of the calibration models for the 

PMSA003 sensors is 3 µg/m3 for PM2.5 and 6 µg/m3 for PM10. For the Dylos DC1100 sensor the 

accuracies are respectively 5 µg/m3 for PM2.5 and 9 µg/m3 for PM10. The validation of the models 

for the PMSA003 sensor show an accuracy of 3 µg/m3 for PM2.5 and 6 µg/m3 for PM10. The 

validation of the models for the Dylos DC1100 sensor shows an accuracy of 5 µg/m3 for PM2.5 and 

8 µg/m3 for PM10. 

The reliability of the MLR model can be further improved by applying ASTM D6708. This option 

has been investigated for PM2.5 of one PMSA003 sensor with PN, RH and T as input variables. 

The ASTM D6708 application reduces the bias to zero with a small increase in the model error. It is 

recommended to investigate the application of ASTM D6708 for multiple sensors. The ASTM 

D6708 application is an arithmetic post calculation and must be seen as a correction to the fitting 

of the model. 

 

Transferability of the model 

The transferability of the MLR model has been investigated for the PMSA003 sensors for PM, RH 

and T as well as PN, RH and T as input variables. Transferability is successful for the MLR model 

based on PM, RH and T where independent validation has shown that the accuracy remains 

comparable to the primary validation. The transferability of the MLR model based on PN, RH and T 

is not successful and is caused by large differences in sensitivity to PN between the sensors. 
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The transferability of the MLR model based on PN, RH and T can be improved by standardizing the 

PN classes. This option has been investigated for the PMSA003 sensors, whereby the PN classes 

are standardized against one specific sensor. It has been demonstrated through independent 

validation that the accuracy through standardization is comparable to the primary validation of the 

sensors.  

Calibration, standardization and model transfer of a MLR model based on PN, RH and T produces 

a more accurate prediction. However, a disadvantage of this process is that one specific sensor 

must be available against which the standardization of other sensors can be performed. Calibration 

and transfer of a MLR model based on PM, RH and T produces a less accurate prediction. An 

advantage of this process is that it can be applied directly on other sensors of the same kind.  

 

Recommendations 

Model transfer has not been investigated for the SDS011 sensor, but it is recommended to 

perform this in a follow-up investigation. 

It is strongly recommended to re-calibrate and re-validate the MLR models under extended 

meteorological conditions. The conditions must be chosen in a way that they are outside the 

ranges as have been used for this project. 

The Visibilis project has been carried out at one location, close to the sea and in the vicinity of 

industry and shipping. It is strongly recommended to repeat the project at other locations, 

preferably inland, but also at locations where other particulate matter sources are present. By 

repeating the project at different locations, the models can be made more robust and accurate, 

because then more different particulate matter particles are included in the calibration and 

validation of the models. 

It is recommended to test the models over a longer period of time. Sensors can deviate slowly 

over time and these effects can affect the reliability of the models 
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Appendix 1 

 

Coding and properties of the sensors and official monitors 

Code Monitor/Sensor Parameter Unit 

PM2.5_BAM1020 BAM1020 PM2.5 µg/m3 

PM10_BAM1020 BAM1020 PM10 µg/m3 

PM2.5_SDS011 Nova SDS011 basic PM2.5 µg/m3 

PM10_SDS011 Nova SDS011 basic PM10 µg/m3 

PM2.5_SDS011_Luft Nova SDS011 Luftdaten PM2.5 µg/m3 

PM10_SDS011_Luft Nova SDS011 Luftdaten PM10 µg/m3 

PM2.5_PMSA003_ 

8F33/9290/9492 

Plantower PMSA003  

sensor 1/2/3 

PM2.5 µg/m3 

PM10_PMSA003_ 

8F33/9290/9492 

Plantower PMSA003  

sensor 1/2/3 

PM10 µg/m3 

DylosDC1100>0.5µm Dylos DC1100 >0.5 µm Particles 

per 0.01 

cubic foot 

DylosDC1100>2.5µm Dylos DC1100 >2.5 µm Particles 

per 0.01 

cubic foot 

PMSA003_8F33/9290/9492_ 

RAW_0.3 

Plantower PMSA003  

sensor 1/2/3 

>0.3 µm Particles 

per 0.1 L 

PMSA003_8F33/9290/9492_ 

RAW_0.5 

Plantower PMSA003  

sensor 1/2/3 

>0.5 µm Particles 

per 0.1 L 

PMSA003_8F33/9290/9492_ 

RAW_1.0 

Plantower PMSA003  

sensor 1/2/3 

>1.0 µm Particles 

per 0.1 L 

PMSA003_8F33/9290/9492_ 

RAW_2.5 

Plantower PMSA003  

sensor 1/2/3 

>2.5 µm Particles 

per 0.1 L 

PMSA003_8F33/9290/9492_ 

RAW_5.0 

Plantower PMSA003  

sensor 1/2/3 

>5.0 µm Particles 

per 0.1 L 

PMSA003_8F33/9290/9492_ 

RAW_10.0 

Plantower PMSA003  

sensor 1/2/3 

>10.0 µm Particles 

per 0.1 L 

Dallas_EXT_T°C Dallas external sensor Temperature °C 

BME280_8F33/9290/9492_T°C Bosch Meteo sensor 1/2/3 Temperature °C 

BME280_8F33/9290/9492_RH% Bosch Meteo sensor 1/2/3 Relative 

Humidity 

% 

BME280_8F33/9290/9492_Pl Bosch Meteo sensor 1/2/3 Air Pressure hPa 

KNMI_ T°C KNMI Hoek van Holland Temperature °C 

KNMI_RH% KNMI Hoek van Holland Relative 

Humidity 

% 
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